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Abstract
Understanding the causes of spatial variation in species richness is a major research focus

of biogeography and macroecology. Gridded environmental data and species richness

maps have been used in increasingly sophisticated curve-fitting analyses, but these

methods have not brought us much closer to a mechanistic understanding of the

patterns. During the past two decades, macroecologists have successfully addressed

technical problems posed by spatial autocorrelation, intercorrelation of predictor

variables and non-linearity. However, curve-fitting approaches are problematic because

most theoretical models in macroecology do not make quantitative predictions, and they

do not incorporate interactions among multiple forces. As an alternative, we propose a

mechanistic modelling approach. We describe computer simulation models of the

stochastic origin, spread, and extinction of species! geographical ranges in an

environmentally heterogeneous, gridded domain and describe progress to date regarding

their implementation. The output from such a general simulation model (GSM) would,

at a minimum, consist of the simulated distribution of species ranges on a map, yielding

the predicted number of species in each grid cell of the domain. In contrast to curve-
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fitting analysis, simulation modelling explicitly incorporates the processes believed to be

affecting the geographical ranges of species and generates a number of quantitative

predictions that can be compared to empirical patterns. We describe three of the "control
knobs! for a GSM that specify simple rules for dispersal, evolutionary origins and

environmental gradients. Binary combinations of different knob settings correspond to

eight distinct simulation models, five of which are already represented in the literature of

macroecology. The output from such a GSM will include the predicted species richness

per grid cell, the range size frequency distribution, the simulated phylogeny and

simulated geographical ranges of the component species, all of which can be compared

to empirical patterns. Challenges to the development of the GSM include the

measurement of goodness of fit (GOF) between observed data and model predictions, as

well as the estimation, optimization and interpretation of the model parameters. The

simulation approach offers new insights into the origin and maintenance of species

richness patterns, and may provide a common framework for investigating the effects of

contemporary climate, evolutionary history and geometric constraints on global

biodiversity gradients. With further development, the GSM has the potential to provide

a conceptual bridge between macroecology and historical biogeography.

Keywords
Biogeography, geographical range, macroecology, mechanistic simulation modelling,

mid-domain effect, species richness.
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I N TRODUCT ION

If a Cartesian grid is superimposed on the earth!s surface,
counts of species richness within each grid cell will not be
uniform or distributed randomly in space. For many taxa,
species richness is correlated with geometric and geograph-
ical properties of the grid cells – their surface area, isolation,
latitude, longitude, and elevation or depth. These properties
are themselves often correlated with grid-cell measures of
contemporary climate, such as average temperature and
annual precipitation. Understanding the mechanistic basis of
these patterns remains the holy grail of modern biogeog-
raphy and macroecology (Willig et al. 2003). This "richness
problem! has been studied for over two centuries (Forster
1778; Wallace 1878; Rosenzweig 1995), and over 100
ecological and evolutionary hypotheses have been proposed
to resolve it (Rohde 1992; Palmer 1994). Because of the
large spatial grain and extent of these patterns, experimental
approaches are rarely possible, and we must infer mecha-
nisms from modelling and statistical analyses (Diamond
1986). Correlative procedures for analysing macroecological
data have become increasingly sophisticated and powerful,
but we are not necessarily getting much closer to a definitive
understanding (Rohde 1992; Willig et al. 2003).

In this paper, we briefly review the "curve-fitting!
approach that has dominated contemporary analyses of

species richness data. We argue that more mechanistic
approaches that model the origin and spread of species
geographical ranges in a heterogeneous landscape offer a
potentially more powerful framework for investigating
species richness and associated macroecological patterns.
This general simulation model (GSM) is a relatively simple
form of pattern-oriented modelling (Grimm et al. 2005), in
which a bottom-up model is used to predict system-level
properties. In this paper, we describe a GSM for macroe-
cology: a general stochastic modelling framework for
simulating processes such as speciation, dispersal and
extinction in a heterogeneous landscape.

THREE GR IDDED DATA LAYERS

Three kinds of data layers are typically used to analyse
spatial patterns of species richness: (1) a gridded map of a
biogeographical domain, such as a continent or biocli-
matic region; (2) species occurrence records within each
grid cell of the domain; and (3) a set of contemporary (or
increasingly, historical or future) environmental variables
measured for each grid cell in the domain, such as
average temperature, net primary productivity or topo-
graphic relief. These data layers are used in analyses of
species richness patterns and form the inputs to the
GSM.
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Although beyond the scope of this paper, we note that
many potential sources of error are associated with each
data layer, and that the effect of these errors will probably
vary with the spatial scale of the analysis. Recent studies
have begun to explore the effects of measurement errors
(e.g. Scott et al. 2002; Mathias et al. 2004; Guralnick & Van
Cleve 2005; Hurlbert & Jetz 2007). However, in most
analyses, process and measurement error are not distin-
guished, and they are pooled into a single error term. For
now, we take the same approach and assume that, for high-
quality data sets analysed at an appropriate spatial scale, the
underlying biogeographical signal of the data is not seriously
distorted by inevitable uncertainty in the data layers. Explicit
modelling of the processes that give rise to sampling errors
is a promising avenue for future research.

CURVE - F I T T ING ANALYSES OF SPEC I E S R I CHNESS
PAT T ERNS

How are the three kinds of data layers (gridded domain,
species occurrences and environmental variables) typically
analysed? Until recently, the most common approach has
been to treat each grid cell as an independent sample, and
then search for correlations between species richness and
climate variables within the domain. For example, a simple
linear regression of species richness of South American
birds with net primary productivity (Rahbek et al. 2007)
accounts for 44% of the variation in species richness among
1 · 1 degree grid cells (Fig. 1). This curve-fitting approach,
which typically uses linear functions and log-transformed
data, has characterized hundreds of published analyses that
invoke measures of contemporary climate as arguably causal
mechanisms of patterns in species richness. The strength of
the mechanism is often inferred from the GOF (usually
measured by r2), and by the frequency of studies that show
such patterns. For example, Hawkins et al. (2003) concluded
from a meta-analysis that 83 of 85 studies strongly
supported some aspect of the water-energy hypothesis,
because species richness was significantly correlated with
grid-cell measures of temperature or precipitation. In single-
factor regression analyses, climatic variables explained on
average 60% of the variation in species richness in
continental areas (Hawkins et al. 2003).

L IM I TAT IONS OF CURVE F I T T ING

The technical challenges of spatial autocorrelation (Rangel
et al. 2006), inter-correlated predictor variables (Mac Nally
2002), nonlinear responses of species richness to environ-
mental variables (Mittelbach et al. 2001) and effects of
spatial scale (Nogués-Bravo et al. 2008) have defined much
of the research programme in macroecology for the past
decade. Curve-fitting analyses have successfully identified

repeated patterns of correlation between species richness
and climatic variables. However, this extensive curve-fitting
activity has not led to satisfying explanations for the
underlying causes of species richness gradients (Currie et al.
2004).

As noted by Currie et al. (1999), the core problem is that
most hypotheses to account for large-scale variation in
species richness are specified so vaguely that they do not
predict anything more precisely than a qualitative latitude–
richness correlation (which served to motivate many of the
hypotheses in the first place) or a simple correlation of
species richness with measures of contemporary climate
(which does not lead to unique predictions for different
hypotheses). Notable exceptions include the species energy
model (Wright 1983), the mid-domain effect (Colwell &
Lees 2000) and metabolic theory (Allen et al. 2002), all of
which have recently been used to derive quantitative
predictions of species richness patterns and to test those
predictions with empirical data (Jetz & Rahbek 2001; Currie
et al. 2004; Hawkins et al. 2007). A second problem is that
both contemporary and historical factors influencing species
richness are likely to interact in complex ways. We lack a
body of theory to explain how these mechanisms will
interact. Although causal modelling (Shipley 2009) is a
potential approach to this problem, it has rarely been used in
macroecology. The more common approach of using simple
or multiple regression analysis is not an effective way of
dealing with multicollinearity (Burnham & Anderson 2002).
A final problem with curve-fitting is that the response
variable in the statistical model – species richness per grid
cell – is the total number of species whose geographical
ranges overlap each grid cell in the domain. A mechanistic
understanding of species richness patterns should be based
on modelling the actual species ranges themselves, rather

Figure 1 Linear regression of species richness of South American
endemic birds vs. net primary productivity (NPP) (r2 = 0.44,
P < 0.001). Each point represents a single 1" · 1" latitude–
longitude grid cell (n = 1676) (data from Rahbek et al. 2007).
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than the aggregate variable of their summed overlap in each
grid cell. The GSM directly addresses all three of these
problems: it generates quantitative predictions of species
richness per grid cell, incorporates multiple interacting
processes and models species ranges directly.

B IOC L IMAT I C D I S TR I BUT ION MODEL L ING
STRATEG I E S

Bioclimatic species distribution models (Pearson & Dawson
2003; Elith et al. 2006) use occurrence data to infer the
environmental niche limits of a species, employing a variety
of model-fitting tools (Thuiller 2003; Latimer et al. 2006)
and validation criteria (Araújo et al. 2005). Although
bioclimatic species distribution models are essentially a
form of sophisticated curve fitting, they are becoming more
mechanistic (Thuiller et al. 2008). Recent models have
incorporated processes such as dispersal and extinction
(Iverson et al. 2004; De Marco et al. 2008), and have been
coupled with stochastic population models (Keith et al.
2008). As species distribution models become more
mechanistic, they converge in strategy with the modelling
approach we advocate here.

Why not, then, simply apply bioclimatic species distribu-
tion models to each species in an assemblage, and then sum
the predictions for each grid cell to derive expected species
richness (McPherson & Jetz 2007; Fitzpatrick et al. 2008)?
The primary reason we do not pursue this approach is that it
requires estimating potentially hundreds of parameters as
each species distribution is fitted, optimized and "trimmed!
using historical and ecological considerations. In contrast,
we prefer a modelling strategy in which a set of similar, but
not identical, species are modelled with a much smaller
number of parameters (perhaps less than a dozen). An
intermediate strategy for characterizing variation among
species would be a "random effects! model in which species
differences are characterized by a probability distribution for
each model parameter, or a model in which species are
assigned to different functional groups, each with a different
set of specified parameter values.

Of course, these deliberate simplifications can introduce
other problems. For example, estimating dispersal with a
single dispersal kernel for all species might give very
different results from a model in which the dispersal kernel
for each species was estimated separately. Colwell et al.
(2009) have shown that, even in a homogeneous domain
with a simple Poisson dispersal kernel, there is a strong
interaction between dispersal distance l and geographical
range size in their effects on species richness per grid cell. At
small and intermediate, but identical, range sizes, a simple
spreading dye model produces complex species richness
patterns that do not resemble a simple mid-domain effect
(Colwell et al. 2009). These effects of range size would be

more accurately represented with separate parameters for
each species in an assemblage than with a model that treats
all species identically.

However, we can point to several examples of important
models in ecology, including equilibrium theory (MacArthur
& Wilson 1967), neutral theory (Hubbell 2001) and the
metabolic theory of ecology (Brown et al. 2004), that assume
species are "similar! and are fitted with common parameters.
These models have been surprisingly successful at explain-
ing many patterns in large multi-species assemblages.
Indeed, the underlying premise of macroecology is that
much of the variation in species assemblages is driven by
only a small number of deterministic forces that can be
described with simple stochastic equations (Brown 1995;
Maurer 1999).

Finally, suppose the bioclimatic species distribution
modelling perspective is correct, and the distribution of
each species in nature must be represented by a unique
model with parameters that are distinct from those of other
species in the assemblage. If this were true, the resulting
pattern of species richness might be expected to be complex
and highly variable, but would not necessarily correlate very
well with environmental or geographical variables because
the predicted set of optimum conditions would be different
for each species. In fact, the species richness of many
taxonomic groups correlates very strongly with latitude,
longitude, elevation, and a suite of associated environmental
variables (Rosenzweig 1995). For the same reason that
macroecologists have been successful in using curve-fitting
models to describe species richness as a function of water
and energy variables (Hawkins et al. 2003), we believe there
is merit in pursuing a modelling approach that does not
focus on idiosyncratic differences among species.

MECHAN I S T I C S IMULAT ION MODELS FOR
SPEC I E S R I CHNESS PAT T ERNS

To overcome the limitations of the curve-fitting approach,
and to avoid the unwieldy strategy of predicting species
richness by stacking species distribution models for indi-
vidual species, we propose a third alternative: mechanistic
models that simulate speciation, dispersal and extinction of
species in a heterogeneous landscape (represented as a
gridded domain). Simulation models are characteristically
probabilistic and stochastic, so that multiple iterations of the
same model can be used to empirically estimate the expected
number of species (and its variance) in each grid cell of the
domain, under the conditions of the model. A comprehen-
sive, GSM must be flexible enough to incorporate and
adjust major driving mechanisms of contemporary, past or
future climates, evolutionary and historical forces, and
geometric constraints. These mechanisms can be accom-
modated in a single GSM, potentially providing a common
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framework for investigating hypotheses about the relative
influence on species richness of geometric constraints,
climatic factors and historical processes.

However, the GSM poses some new challenges. It forces
an explicit consideration of the precise rules that govern the
origin of species and the expansion of their geographical
ranges in a bounded domain, and it requires an estimate of
the parameters that control these processes. Because the
GSM approach predicts species richness patterns as they
arise from the overlap of species ranges, the mechanisms by
which range dynamics occur must be explicitly defined and
coded as computer algorithms that operate with a specific
time step and in a logical sequence.

The algorithms in the GSM represent a set of rules that
govern the location, probability and mechanism of specia-
tion, the inheritance of niche characteristics by each new
species from its immediate ancestor, and the ability of each
species to disperse to new grid cells and successfully
colonize them based on their environmental characteristics.
The model could be run for a given number of evolutionary
time steps, until a particular number of species ranges are
simulated, or until a balance between speciation and
extinction is achieved, leading to a stationary distribution
of species richness.

CONTROL KNOBS OF THE GSM

Each algorithm or procedure in the GSM can be thought of
as controlled by a rotary knob, switch or dipswitch
(Rosenzweig & Abramsky 1997). The setting of the control
knob specifies the value of either a continuous parameter
(e.g. like a water faucet) or a discrete multi-state parameter
(e.g. like an automobile headlight switch). Even a relatively
simple model might have a dozen such control knobs. For
purposes of discussion, it is useful to think of one of the
settings on each knob as a "ground! or "null! state (the "off!
position on the water faucet or the headlight switch) that
represents a parsimonious or unconstrained condition for
the process. As an illustration, we consider just three of the
control knobs in a GSM and their possible settings: dispersal
distance, evolutionary origins and environmental gradients.

Dispersal limitation

This control knob specifies limits on the distance, in grid-
cell units, that each species is able to disperse in a single time
step of the model, thereby potentially colonizing a grid cell
that it does not already occupy. The "ground state! for this
control knob would be dispersal within the domain that is
unconstrained by distance, so that a species could potentially
reach any grid cell in the domain in a single dispersal event.
Many models in macroecology fit this scenario (Brown
1995); they describe assemblages for which species richness

is ultimately determined by energetic constraints and other
factors operating within a grid cell, unconstrained by the
ability of species to reach those grid cells (Brown et al.
2004). At the other extreme, initial models of the mid-
domain effect (Colwell & Lees 2000) invoked strict range
cohesion, so that species! geographical ranges could spread
only through contiguous, unoccupied grid cells. This
constraint may reflect many biologically realistic processes
that limit range expansion at smaller spatial scales, including
environmental heterogeneity (Connolly 2005), strong dis-
persal limitation (Swenson & Howard 2005), source–sink
dynamics (Curnutt et al. 1996) and metapopulation structure
(Keitt et al. 2001). Between the extremes of unconstrained
dispersal and strict range cohesion, the dispersal limitation
control knob could be set to allow for dispersal across
intervening grid cells (e.g. Rangel & Diniz-Filho 2005b;
Dunn et al. 2006; Colwell et al. 2009). Patch dynamics
models reflect cases in which the intervening habitat is
unsuitable for colonization (Connolly 2005).

The shorter this dispersal distance, the more closely the
model will resemble the range cohesion model, and the
longer the dispersal distance, the more closely the model will
resemble unconstrained, spatially homogeneous dispersal.
The longer the dispersal distance, the more holes or
discontinuities will be generated in each species! geographi-
cal range. Alternatively, patchy distributions could also arise
in models with contiguous range expansion if local
extinction is allowed to occur within occupied grid cells
(Bokma et al. 2001; Davies et al. 2005; Rangel & Diniz-Filho
2005b; Connolly 2009). We have had good success with a
simple dispersal model in which dispersal distances follow a
Poisson distribution with a common dispersal parameter l
for all species in the assemblage (Gotelli et al. 2007; Colwell
et al. 2009). Modelling dispersal in this way allows for
occasional long-distance dispersal events, but requires the
investigator to make decisions about which occupied grid
cells are more likely to serve as dispersal sources. Does
dispersal depend on the environmental conditions in the
source and ⁄or the target grid cell, or does it depend on the
location of the source cell within the currently occupied
range (edge vs. interior grid cells)? What is the fate of
propagules targeted to disperse beyond the edge of the
domain? Are these propagules "lost! or can they "stop short!
to colonize unoccupied cells at the edge of the domain?
If the grid cells in the domain are fairly large, a model of
contiguous dispersal into adjacent cells may be more
appropriate. In this case, the algorithm is similar to cellular
automata, with rules specified for spreading into the
adjacent four or eight cells (von Neumann or Moore
neighbourhoods respectively). In preliminary trials (N.J.
Gotelli, unpublished data), both methods give similar
results, although the eight-cell Moore neighbourhood is
more efficient and leads to less porous species distributions.
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Evolutionary origins

This control knob sets the number of independent
evolutionary origins for modelling the biota. The ground
state of this control knob defines n independent evolution-
ary origins for a biota of n species. The origin of each
species is a unique event, and evolutionary history (i.e. the
position of the geographical range of the ancestor species)
does not have an influence on the resulting pattern.
Moreover, niche inheritance and niche conservatism (Losos
2008) are not explicit in this model: the niche of each
species is independent of the niche of all other species. Most
existing range-based models of species richness (Jetz &
Rahbek 2001; Grytnes 2003; Connolly 2005; Storch et al.
2006; Rahbek et al. 2007) treat the origin of each species as
an independent event.

At the other extreme, a single evolutionary origin might
initiate an entire clade that is distributed within a domain. In
this class of models, each new species originates only within
(or adjacent to) the geographical range of its ancestor.
Evolutionary history potentially influences the pattern of
species richness, and the model generates not only the
expected species richness per grid cell but also a phylogeny,
both of which could be compared to empirical data. Bokma
et al. (2001), Rangel & Diniz-Filho (2005a), Rangel et al.
(2007) and Roy & Goldberg (2007) provide examples of
such evolutionary models that include a single ancestral
taxon that gives rise to a set of n extant taxa within a
domain. As our understanding of the evolutionary relation-
ships and biogeographical history of real organisms
improves, it will become possible to set empirical values
for the n independent origins parameter. For example,
Pennington & Dick (2004) estimated that up to 20% of tree
taxa in a sample of an Ecuadorean forest were members of
clades descended from long-distance immigrants from
Africa.

The algorithmic details will need to address the geo-
graphical mode of speciation. If speciation is sympatric or
from long-distance dispersal (peripheral isolates), then the
algorithm must specify the cell of origin and the dispersal
kernel. If speciation is allopatric, then the algorithm must
specify how existing geographical ranges are fragmented and
whether the probability of fragmentation depends on
measured environmental variables. Rangel et al. (2007)
successfully used a stochastic sine-wave function to simulate
climate change and fragment ranges in an evolutionary
model. These authors also used two simple, stochastic
variables to control the "heritability! of the environmental
niche from ancestor to descendant taxon – one for the niche
centre in niche space and the other for niche breadth. The
niche centre parameter encompassed the extremes between
perfect niche conservatism (the daughter taxon retains the
environmental niche centre of the parent taxon) to rapid

evolutionary adaptation (the niche centre of the daughter
taxon evolves to match the mean environmental conditions
of the parental range fragment from which the daughter
originates). The niche breadth parameter controls the range
of conditions tolerated around the niche centre.

Environmental gradients

This control knob determines whether speciation, dispersal
or extinction are equiprobable among grid cells or depend
on particular environmental variables. Although most
analyses and discussion of environmental variables focus
on contemporary climate, new reconstructions of paleocli-
mates (Brewer et al. 2007; Salzmann et al. 2008) and paleo-
richness (FAUNMAP 2009) may provide data for realistic
historical models that can be analysed with the GSM.
Several control knobs may be necessary because the
environmental factors that affect speciation might not be
the same ones that determine dispersal or extinction. For
terrestrial biotas, temperature and precipitation are two
variables that are important correlates of large-scale patterns
of species richness, and therefore are likely candidate
variables for the cell-by-cell weighting of dispersal and net
speciation rates. The water-energy model provides an
emerging framework that may eventually yield functional
forms for water and energy variables derived from first
principles of physiology and physical constraints (O!Brien
2006). For now, however, these models are either concep-
tual only (Vetaas 2006; McCain 2007) or derived from
regression parameters fitted to particular data sets (O!Brien
1998). Regardless of the details of the algorithms that
determine the way in which climate affects the size and
location of geographical ranges, the ground state of this
control knob is a model in which all grid cells are
equiprobable within a pre-defined geographical domain
and zero elsewhere.

MODEL VAR IAT I ONS

Thus far, our simplified GSM has three control knobs
(dispersal distance [DD], evolutionary origins [EO] and
environmental gradients [EG]) that specify some key
algorithms for simulating geographical ranges of species. If
we consider each control knob in its dichotomous off-on
settings (where "off! represents the ground state), we
generate a set of eight qualitatively different kinds of
simulation models (Table 1). Five of these models corre-
spond well with recently published analyses and large-scale
simulations.

The simplest model, with all three control knobs in the
ground state [0-0-0; no dispersal limitation, n-evolutionary
origins, equiprobable environments], would yield a Poisson
distribution of species richness per grid cell because each
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species occurrence is placed randomly, equiprobably and
independently throughout the domain. This model corre-
sponds to the statistical null hypothesis that is tested in
many regression and curve-fitting analyses. Levins (1969)
original formulation of a single-species metapopulation
model also matches this category, as colonization occurs
among patches in a homogeneous environment with no
dispersal limitations. However, the Levins (1969) model is
dynamic, as it includes continuous local extinction and
recolonization, and it is not spatially explicit.

Imposing range cohesion and allowing each species to
originate independently, in an equiprobable environment [1-
0-0] describes the algorithm for the spreading dye model
(Jetz & Rahbek 2001), in which each species originates in a
randomly chosen grid cell, and then its range expands
randomly and equiprobably into contiguous unoccupied grid
cells until its specified range is filled. The spreading dye
model is the simplest two-dimensional simulation model of
the mid-domain effect (Colwell & Lees 2000). The analytical
models of Grytnes (2003) and Connolly (2005) also fall in
this category, although they do not constrain the frequency
distribution of range sizes to match the empirical data. This
category also includes models with partial dispersal limita-
tion in a patchy environment (Connolly 2005).

Including only the constraint of evolutionary origins [0-1-
0, a single geographical origin for all species] in an
equiprobable, but bounded environment probably will not
generate any geographical gradients in species richness,
because all cells in the domain are equivalent and are equally
accessible to colonists. However, because the origin of new
species is no longer independent of the placement of
previous species, this class of models could generate

important deviations from a Poisson distribution of species
richness and variance per grid cell.

A model with no dispersal limitation and multiple origins
but with environmental gradients that affect origination,
extinction or migration [0-0-1] is consistent with many
hypotheses that invoke contemporary climatic or environ-
mental effects (e.g. temperature, precipitation, productivity,
harshness or environmental heterogeneity) as the primary
determinants of species richness patterns. These scenarios,
described as "range scatter! models by Rahbek et al. (2007),
assume that historical and evolutionary forces are relatively
unimportant in determining patterns of contemporary
species richness. Species are potentially able to reach all
suitable grid cells within the domain, so that local species
richness is controlled by some aspects of energy or other
contemporary abiotic variables. Predictions of models in
this category would be similar to simple regression-based
analyses of species richness, which implicitly assume that
species richness within a grid cell does not depend on its
location within the domain and is determined only by those
environmental variables included in the regression model
and a stochastic error term (e.g. Hawkins et al. 2003).

Imposing a dispersal constraint on a model with
environmental gradients and multiple origins [1-0-1] pro-
duces a hybrid model that combines climatic and mid-
domain effects, leading to a spreading dye model in a
heterogeneous environment (Storch et al. 2006; Rahbek et al.
2007). For the South American avifauna, these "range
cohesion! models did a better job of predicting species
richness for wide-ranging species than did either simple
spreading dye models [1-0-0] or range scatter models [0-0-1]
(Rahbek et al. 2007).

Table 1 Knob settings of a hypothetical GSM for simulating species richness patterns in a gridded domain

Model
Dispersal
limitation

Evolutionary
origins

Environmental
gradients References

Poisson random variable 0 0 0 Implicit null hypothesis in most curve-fitting analyses (Levins 1969)
Spreading dye 1 0 0 Jetz & Rahbek (2001), Grytnes (2003), Connolly (2005)
Evolutionary origins 0 1 0
Range scatter 0 0 1 Implicit mechanistic model in most curve-fitting analyses

(e.g. Hawkins et al. 2003)
Range cohesion 1 0 1 Storch et al. (2006), Rahbek et al. (2007)
Neutral model 1 1 0 Bokma et al. (2001), Rangel & Diniz-Filho (2005b),

Davies et al. (2005), Connolly (2009)
Evolutionary origins +
environmental gradients

0 1 1

Saturated model 1 1 1 Bokma et al. (2001), Rangel & Diniz-Filho (2005a),
Rangel et al. (2007), Roy & Goldberg (2007)

Knob settings of 0 represent a "ground state! for each knob. Dispersal limitation: 0 = none, 1 = range cohesion or limited dispersal.
Evolutionary origins: 0 = n independent evolutionary origins for a fauna of n species, 1 = (< n) independent evolutionary origins, generally 1.
Environmental gradients: 0 = colonization and ⁄ or range expansion into all grid cells equiprobable, 1 = probabilistic colonization and ⁄ or
range expansion into grid cells as a function of measured environmental variables.
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Models that specify a single evolutionary origin and
dispersal limitation in an equiprobable environment [1-1-0]
capture the spirit of the neutral model (Hubbell 2001), but
differ from classic neutral models in specifying a bounded
domain. At large biogeographical scales, with strong
dispersal limitation, these models can generate mid-domain
peaks of species that are qualitatively similar to the
predictions of the spreading dye and other two-dimensional
mid-domain effect models (Rangel & Diniz-Filho 2005b).
Models that characterize speciation, colonization and
extinction dynamics at the patch scale (rather than as
individual births and deaths) also belong to this category
(evolutionary origins models of Bokma et al. 2001; Davies
et al. 2005; analytical patch occupancy models of Connolly
2009).

Models that include effects of environmental gradients
and a single evolutionary origin but no dispersal constraint
[0-1-1] have not been explored. Depending on the details of
the speciation mechanism that is modelled, the lack of a
dispersal constraint may or may not erase historical effects
that arise during speciation.

The most complex combination in the GSM proposed
here includes dispersal limitation, a single evolutionary
origin and effects of environmental gradients [1-1-1]. Rangel
& Diniz-Filho (2005a) pioneered models in this class (in one
and two dimensions), with a single, bounded, environmental
gradient or geographical mosaic; a single evolutionary origin;
and simple (peripatric) speciation and extinction rules. They
showed that the resulting pattern of species richness is a
balance between gradient strength and geometric con-
straints. Rangel et al.!s (2007) recent simulation of avian
biogeography incorporates all of these effects on a complex
map (South America), and incorporates many other "control
knobs! that specify rules for environmental fluctuation,
range fragmentation and extinction, and the inheritance of
the environmental niche characteristics from ancestor to
descendant species.

Although each of the studies discussed here involves
much more detail, specification of just three of the control
knobs in the GSM effectively encompasses and classifies
most published analytical and simulation models in
macroecology.

E S T IMAT ING , OPT IM I Z ING AND INTERPRE T ING
MODEL PARAMETERS

Even a relatively simple simulation model can potentially
contain many parameters. It is unlikely that all of these can
be estimated independently with empirical data (Ricklefs
2003), so values of such parameters will have to be chosen
on the basis of biological insight, expert opinion or
parsimony. The parameters can then be adjusted or
optimized to generate the best possible fit between the

model output and empirical data. Parameter optimization
for a GSM may be especially computationally intensive
because a large number of model simulations will have to be
run for each parameter combination to estimate the model!s
predicted values of response variables. Moreover, applying
standard algorithms for finding best-fit parameter values
(e.g. simplex, gradient or simulated annealing approaches;
Kelly 1999) is also problematic because GOF surfaces for
these stochastic models will not necessarily be smooth, so
simplex and gradient algorithms may not converge on the
optimal parameter sets. Genetic programming or reverse
engineering algorithms (Bongard & Lipson 2007) may be
needed to efficiently locate optimal (or near-optimal)
parameter combinations.

This strategy of adjusting and optimizing the parameters
would produce a single synthetic model that incorporates
several interacting mechanisms. Such a model would
probably reflect the intuition of many macroecologists
about the multiple factors that affect species richness
(Harrison & Cornell 2007). However, such a model is likely
to be unnecessarily complex. An alternative approach is to
begin "turning off the control knobs! of Table 1, and try to
construct simpler models to account for variation in species
richness. Rather than optimizing parameters to generate a
single complex model, this approach uses the GSM to
generate a suite of simple (null) models that can be viewed
as alternative hypotheses. If there are n binary control
knobs, there are 2n parameter combinations or qualitatively
distinct models. This number may become prohibitively
large for a realistic GSM, but it may not be necessary to test
all model combinations to address the interactions of a few
key mechanisms.

Finally, a comparative approach could be used for a priori
comparisons of taxonomic groups that differ in dispersal
ability or other features, or comparisons of a single
taxonomic group among different biogeographical domains
that differ in geological histories. In this way, the GSM can
be used to explore complex narratives and hypotheses in
historical biogeography (see Future challenges).

DEF IN ING THE RESPONSE VAR IAB L E

Explaining the observed pattern of species richness per grid
cell is the principal objective for building the GSM. In
theory, different models can be assessed or ranked solely on
the basis of their ability to account for variation in species
richness. However, cases may arise in which two different
models predict a similar pattern of species richness. For
example, an evolutionary model that posits higher speciation
rates closer to the tropics (Rohde 1992; Allen et al. 2002,
2006; Allen & Gillooly 2006), a niche conservatism model
with tropical origins (e.g. Rangel et al. 2007) and an energetic
model that posits more species where there is higher
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temperature or more energy available (Currie et al. 2004)
would all predict a positive correlation between species
richness and temperature.

How can we decide between competing models in such
cases? Grimm et al. (2005) advocate the analysis of multiple
response variables in assessing the output of complex
simulation models. One of the great benefits of using the
GSM is that it can generate many secondary predicted
patterns for analysis. The output from any single run of the
GSM can be organized as a binary presence–absence matrix,
in which columns are the grid cells, rows are species and the
matrix elements represent the presence (1) or absence (0) of
a given species in a particular grid cell (Gotelli 2000).
Traditional metrics derived from presence–absence matrices
include the column sums (yielding the species richness per
site, our primary response variable) and the row sums
(resulting in the number of sites in which each species
occurs). In this context, the row sums represent the
predicted range-size frequency distribution, which can be a
possible secondary response variable (Rangel et al. 2007).

Moving beyond the simple row and column sums,
presence–absence matrices enable the generation of addi-
tional response variables, including the "dispersion field!
(Graves & Rahbek 2005), which is the set of geographical
range sizes of species occurring in a given cell, and the
"diversity field!, which is the set of richness values of cells
within the range of a given species (Arita et al. 2008). Patterns
of dispersion and diversity fields may assist in model
discrimination and evaluation. Other potential response
variables that exploit the structure of the full matrix include
the location of centres of endemism (Jetz et al. 2004), the
degree of nestedness of the species assemblage (Ulrich et al.
2009), measures of beta diversity (Anderson et al. 2006; Jost
2007; Chao et al. 2008), and patterns in the scaling of species
richness, including the species–area relationship (Arita &
Rodriguez 2002; Lyons & Willig 2002).

An entirely different dimension can be added to all these
metrics if rows (species) are classified according to a
phylogeny generated by the model itself, and the geographi-
cal position of columns (grid cells) is explicitly included in
the model. This enables the analysis of response variables in
spatial and temporal evolutionary contexts that might allow
a finer tuning of contrasting models. First, the shapes of the
generated phylogenies themselves can be compared with
observed phylogenies using metrics such as tree balance (e.g.
Heard & Cox 2007) and the pattern of lineage-branching
pattern through time (e.g. White et al. 2006; Alroy 2008;
Phillimore & Price 2008). Second, the phylogenetic com-
munity structure (sensu Webb 2000) of taxa co-occurring in
samples of spatially contiguous cells can be compared
between observed and simulated cases. We expect high
phylogenetic clustering at these biogeographical scales either
when dispersal limitation is high and a spatial signature of

speciation persists for a long time (Graham & Fine 2008) or
when strong environmental gradients are combined with
strong phylogenetic niche conservatism (Wiens & Graham
2005; Losos 2008). Third, specific phylogeographical pat-
terns can be examined: e.g. how often in simulated cases do
taxa within some spatially or environmentally defined region
form a clade of the same size and shape as is seen in the
observed phylogeographical distribution? A latitudinal gra-
dient of species richness could thus be examined, shedding
light on the many competing evolutionary hypotheses that
have been proposed to explain the pattern (Wiens &
Donoghue 2004; Jablonski et al. 2006; Mittelbach et al. 2007;
Arita & Vázquez-Dominguez 2008; Jablonski 2008). Finally,
if additional traits or attributes of species have been
measured, there are numerous indices for describing the
distribution of trait states among terminal taxa (e.g.
Blomberg et al. 2003).

In combination with species richness per cell, all these
secondary patterns facilitate discrimination among models.
However, there are difficulties with this approach because
not all of the response variables are produced by all of the
models, and some models make use of the empirical
distribution of some of the response variables. For example,
the evolutionary model of n independent origins does not
generate a phylogeny; conversely, many simple spreading
dye models use the observed range-size frequency distribu-
tion to generate model predictions, so these variables could
not be used to evaluate models. Indeed, it is arguable that
formal model selection statistics should not be used for any
response variables when comparing, e.g. a model that uses
the observed range size frequency distribution and one that
predicts the range size frequency distribution. An additional
challenge is that models that optimize the fit to one of the
response variables (such as the number of species in each
grid cell) may do so at the expense of others (such as the
range size frequency distribution). Although the GSM
predicts species richness and a number of other macroeco-
logical patterns, it is unclear how much weighting should be
given to secondary patterns for the purposes of assessing
GOF.

ASSESS ING MODEL ADEQUACY AND COMPAR ING
MODELS

For a GSM to be useful, we must be able to identify models
that fit the observed data well, to measure the adequacy of
the fit for each model and to rank competing models against
one another in terms of their predictive power. We focus
here on modelling the number of species in each grid cell,
leaving aside other model predictions such as phylogenetic
patterns or range size frequency distributions.

A good model will have little or no bias, meaning that it
will accurately predict observed species richness in each grid
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cell. In the best case scenario, a good model will also be
precise, meaning that repeated stochastic trials of the same
model will generate a small variance in species richness in
each grid cell. A classical measure of the adequacy of a
univariate estimator (UN), calculated from a sample of size
N to estimate a parameter h, is the mean square error (MSE,
e.g. Lehmann & Casella 1998), which includes the two
components of bias and variance:

MSE ¼EðUN # hÞ2

¼½EðUN Þ # h&2 þ VarðUN Þ
¼½BiasðUN Þ&2 þ VarðUN Þ

For our purposes, we shall ignore measurement error and
treat the observed data as the "parameters! to be estimated
by the model. Although more complex models may be more
accurate, they may also generate greater variances among
simulation trials and therefore be less precise. On the other
hand, simpler models may be less variable among repeated
simulation trials but may also be less accurate. The MSE
therefore identifies models that strike a good balance
between accuracy and parsimony.

The observed (empirical) data consist of a discrete count
of the number of species within each of c grid cells on a two-
dimensional surface, which we will denote by the vector O,
with elements O1, O2, …, Oc. Similarly, for a given model, a
single stochastic outcome from a simulation of the model
produces a species richness value within each of these grid
cells. Let N be the number of simulations and Sik be the
value in the kth grid cell (k = 1,…, c) for the ith simulation
(i = 1,…, N). An individual simulation surface will be
denoted Si, which, like O, is a vector of length c. For a large
number of independent, stochastic simulations (say,
N = 10 000), the estimated expectation for the kth grid
cell is the average species richness:

Ek ( 1
N

XN

i ¼ 1

Sik

We denote the vector of these expectations (also of length c)
as E.

Each vector of richness values can be represented as a
point in c-dimensional space. From this perspective, the
squared Euclidean distance from E to O, here denoted by
[D(O, E)]2, measures bias because it is the sum of the
squared deviations of the observed species richness (O)
from the expected species richness predicted by the model
(E):

X
ðbiasÞ2 ¼ ½DðO;EÞ&2 ¼

Xc

k¼ 1

ðOk # EkÞ2

We can then calculate a measure of the variability or
(thinking geometrically) the relative dispersion of the

simulation points Si in multivariate space (Anderson 2006).
The Euclidean distance from simulation surface Si to the
average surface (or centroid) for all simulations from that
model is D(Si, E). Dispersion is then calculated as the sum
of squared distances from the individual simulation vectors
to their centroid E, divided by (N ) 1). This dispersion is
equal to the sum (across all cells) of the variances in the
simulation values (calculated within each cell):

X
ðvarÞ ¼ 1

ðN#1Þ

XN

i ¼ 1

½DðSi ;EÞ&2

To compare the models directly with one another for their
predictive capability, we can use the sum of the MSEs, as
follows:

X
ðMSEsÞ ¼ ½DðO;EÞ&2 þ 1

ðN#1Þ

XN

i ¼ 1

½DðSi ;EÞ&2

Better models will have smaller values for this sum, which
includes the components of bias ([D(O, E)]2) and impreci-
sion ( 1

ðN#1Þ
PN

i¼1 ½DðSi ;EÞ&2). This index should not be
used to compare models if the parameters used in the
models were themselves estimated from the observed data.
It can, however, be used to compare mechanistic models
that incorporate parameters that were derived independently
of the observed data. Models can be ranked on the basis of
this index or other metrics that implicitly or explicitly
measure and trade off accuracy vs. precision.

In addition to ranking a set of models according to their
precision and low bias, it will often be informative to assess
the adequacy of a single model against the data. For testing
the GOF of a particular model based on count data such as
species richness, we suggest using the Kullback–Leibler (or
K–L) distance (Kullback & Leibler 1951). The K–L distance
[K(O,E)] compares the observed (empirical) data O with
species richness predicted by the model, E:

K ðO;EÞ ¼ log
nE
nO

! "
þ 1

nO

Xc

k¼ 1

Ok log
Ok

Ek

! "

where nE ¼
P

k Ek and nO ¼
P

k Ok. For models in which
the observed range size frequency distribution is preserved,
nE = nO, so the first term collapses to zero, and the K–L
distance depends only on the difference between the ob-
served and predicted species richness for each grid cell. The
K–L distance test differs by only a constant multiplier from
a likelihood ratio test of a given model vs. a saturated model
(see p. 336 in Burnham & Anderson 2002).

The next step is to assess the distribution of the K–L
distances under the null hypothesis that the model is correct
(i.e. its output accurately matches the empirical data). An
intuitive way to estimate this distribution is to simulate a
large number of data sets (S1, S2, …, Si,…, SN) that do
conform exactly to the model!s assumptions, and then
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calculate the K–L distances associated with the simulated
data sets (Tsay 1992; Waller et al. 2003). These K–L
distances K(Si, E), i = 1, 2, …, N form a parametric
bootstrap distribution (Efron & Tibshirani 1993; White
2002) that can be used directly for hypothesis testing. The
P-value is estimated directly as the proportion of simulated
K(Si, E) distances that is greater than or equal to K(O, E).
This empirical testing procedure assumes that simulations
are independent of one another, but (importantly) does not
assume independence among the cells within a given
simulation, nor does it make any assumption about the
nature of the distribution of the K–L distances.

Analyses such as comparisons of MSE values and tests
based on K–L distances will allow investigators to quantify
the accuracy and precision of different simulation models, to
rank competing models and to perform GOF tests for
individual models. These tests can be performed on
contemporary species distributions and environmental vari-
ables, but they can also be adapted for evaluating changes in
species richness through time. In addition, diagnostic tools
and residual plots can be used to identify individual grid cells
or geographical regions in which a model!s predictions
consistently overestimate or underestimate species richness.

FUTURE CHAL L ENGES

We have argued that stochastic simulation models of species
occurrences provide a powerful complement to traditional
curve-fitting and more recent bioclimatic species distribution
modelling. However, the GSM is not a panacea. As with
traditional curve fitting and bioclimatic species distribution
modelling, the results will be sensitive to the spatial scale and
taxonomic resolution of the data. Moreover, our ability to
test historical hypotheses will be limited by the availability of
good phylogenies and (especially) environmental data layers
for historical climates. Nevertheless, simulation models hold
great promise for understanding the role of historical and
contemporary forces in shaping species richness patterns and
for projecting species richness under climate change.

In closing, we note that the subdiscipline of historical
biogeography (Morrone & Crisci 1995) also has tried to link
patterns of species diversity to historical and evolutionary
processes through the mapping of contemporary diversity
on phylogenies, areograms and vicariant events (Platnick &
Nelson 1978; Rosen 1978; Nelson & Platnick 1980).
Perhaps the development of a detailed GSM will provide
a conceptual bridge between macroecology and historical
biogeography (Brooks 1990; Cracraft 1994).
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